Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
J Sci Food Agric ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545871

RESUMO

BACKGROUND: The hard double-walled structure of Ganoderma lucidum spore powder (GLSP) is difficult for the human body to digest, so it is very important to break the wall of GLSP. In this study, the wall of GLSP was broken by mechanical milling at room temperature (MM-R) and ultra-fine grinding at low temperature (UFG-L), respectively. RESULTS: Compared with MM-R, UFG-L could better retain the sporangium powder's morphological and structural integrity. During in vitro digestion, compared with unbroken GLSP, the released amounts of polysaccharides and triterpenes from broken GLSP were significantly increased, and they increased with the increase of specific surface area. The bioaccessibility of polysaccharide and triterpene from unbroken GLSP after the intestinal stage were 29.52% and 5.37%, respectively. The bioaccessibility of polysaccharides and triterpene from broken GLSP by MM-R after the intestinal phase were 39.73-72.45% and 16.44-24.97%, while those by UFG-L were 44.53-104.18% and 12.96-32.90%, respectively. CONCLUSION: The active ingredients of broken GLSP showed better digestion and absorption abilities than unbroken GLSP. Moreover, the specific surface area of GLSP by UFG-L was lower than that by MM-R, and the bioaccessibility of GLSP by UFG-L was higher than that by MM-R. © 2024 Society of Chemical Industry.

2.
Food Funct ; 15(7): 3752-3764, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506160

RESUMO

This study aimed to elucidate the effect of tyrosol (TYR) on the amelioration of nonalcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.025% (w/w) TYR (TYR) for 16 weeks. Following a 16-week intervention, the TYR cohort exhibited diminished final body weight and hepatic lipid accumulation, compared to HFD fed mice. Liver metabolomics analysis revealed that TYR increased the hepatic levels of spermidine, taurine, linoleic acid, malic acid and eicosapentaenoic acid (EPA), indicating the beneficial effect of TYR on lipid homeostasis. Using molecular docking analysis and the luciferase assay, we found that TYR acts as a ligand and binds with peroxisome proliferator-activated receptor-α (PPARα), which plays a pivotal role in the modulation of hepatic lipid metabolism, thereby activating the transcription of downstream genes. Our results suggest that TYR alleviates NAFLD in HFD-fed mice probably by the modulation of the PPARα signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Álcool Feniletílico/análogos & derivados , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , PPAR alfa/genética , PPAR alfa/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Lipídeos/farmacologia
3.
J Sci Food Agric ; 104(7): 4296-4308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433335

RESUMO

BACKGROUND: Flaxseed orbitides have health-promoting properties, particularly potent anti-cancer activity. However, flaxseed orbitides containing a methionine structure, such as [1-9-NαC]-linusorb B2 (CLB), are easily oxidized to sulfoxide ([1-9-NαC],[1-Rs,Ss-MetO]-linusorb-B2 (CLC)) and sulfone ([1-9-NαC], [1-MetO]-linusorb B2 (CLK)), with CLC having less anti-cancer ability than CLB. It is unclear why oxidized flaxseed orbitides are less effective against cancer than non-oxidized flaxseed orbitide. RESULTS: Non-oxidized ([1-9-NαC]-linusorb-B3 (CLA) and CLB) and oxidized (CLC and CLK) flaxseed orbitides were found to significantly upregulate the levels of pro-apoptotic proteins, including Bax/Bcl-2, CytoC, caspase-3, and caspase-8, in a dose-dependent manner, with non-oxidized flaxseed orbitides being more effective than oxidized flaxseed orbitides. Mechanically, the cellular absorption of non-oxidized flaxseed orbitides was higher than that of oxidized flaxseed orbitides. Moreover, the significant fluorescence quenching of DR4 protein by flaxseed orbitides (especially non-oxidized orbitides) indicated the formation of a DR4-orbitide complex. Molecular docking demonstrated that non-oxidized orbitides could easily dock into the active cavity of DR4 protein. Further blocking DR4 significantly reduced the ability of non-oxidized flaxseed orbitides to stimulate caspase-3 expression, whereas oxidized flaxseed orbitides retained this ability. CONCLUSION: Non-oxidized flaxseed orbitides are more effective against cancer than oxidized flaxseed orbitides due to higher cellular uptake and activation of the DR4-mediated death receptor signaling pathway. © 2024 Society of Chemical Industry.


Assuntos
Linho , Humanos , Linho/química , Peptídeos Cíclicos/química , Caspase 3 , Células Hep G2 , Simulação de Acoplamento Molecular , Apoptose , Receptores de Morte Celular , Linhagem Celular Tumoral
4.
Food Res Int ; 182: 114049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519198

RESUMO

In the context of precision nutrition, the addition of ARA and DHA in infant formula needs to consider more factors. This study conducted a comprehensive literature review, including 112 relevant Chinese and English articles, to summarize and analyze the global levels of ARA, DHA, and the ARA/DHA ratio in breast milk. The data were correlated with local aquatic products intake and children's IQ. The results indicated that the average level of DHA in breast milk across regions is lower than that of ARA. Variations in DHA content were identified as a primary factor influencing ARA/DHA ratio fluctuations. Breast milk ARA and DHA levels decrease with prolonged lactation periods but increase over the past 22 years. Correlation analysis revealed a significant positive relationship between aquatic products intake and breast milk DHA levels (r = 0.64, p < 0.05). Breast milk DHA levels also showed a significant positive correlation with children's IQ (r = 0.67, p < 0.01). Stable breast milk ARA content did not exhibit significant correlations with aquatic products intake or children's IQ (r = 0, p > 0.05). Among 22 infant formula products available in China, only 5 had ARA levels within the range of breast milk. Most formula products had higher ARA levels than DHA, resulting in ARA/DHA ratios generally exceeding 1. The temporal and spatial variability in breast milk ARA and DHA levels may lead to diverse health outcomes in infants. Therefore, the addition of ARA and DHA in infant formula should consider this variability, including the molecular forms and positional isomerism of the added ARA and DHA. Additionally, considering the impact of different cognitive development tests and infant's gene expression on formula assessment results, there is a need to establish a more comprehensive infant health assessment system to guide the addition of ARA and DHA in formula.


Assuntos
Ácidos Docosa-Hexaenoicos , Fórmulas Infantis , Lactente , Feminino , Criança , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Araquidônico , Aleitamento Materno , Leite Humano
5.
Food Funct ; 15(5): 2719-2732, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38380650

RESUMO

Bovine colostrum (BC) has high nutritional value; however, the low bioavailability of immune active substances in BC may affect their immunoregulatory function. Our previous studies indicated that encapsulating bovine colostrum with liposomes could enable the sustained release of immunoglobulin G in vitro; however, the effect of bovine colostrum liposomes (BCLs) on the bioavailability of immunoglobulins in vivo is still unknown. In addition, the immunoregulatory function of BCLs on immunosuppressed mice is still unclear. Therefore, our current study aimed to explore the effect of BCLs on the bioavailability of immunoglobulins, and further explore their immunoregulatory effect on immunosuppressed BALB/c mice. Through metabolic cage experiments, it was shown that BCLs decreased the urine and fecal concentrations of IgG and exhibited a higher bioavailability of IgG in mice than BC (about 2-fold). In addition, by establishing an immunosuppressed animal model, it was found that BCLs could increase the body weight, spleen weight, and thymus weight in immunosuppressed BALB/c mice, which further restored the serum levels of interleukin-4 (IL-4), interleukin-10 (IL-10), tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ). Through histology analysis, it was suggested that BCLs restored the structure of jejunal epithelial cells, which was accompanied by an improvement in intestinal cytokine levels (IL-4, IL-10, TNF-α, and IFN-γ). Finally, BCLs increased serum and intestine concentrations of immunoglobulin G (IgG) and immunoglobulin A (IgA) in immunosuppressed BALB/c mice, which further indicated that BCLs had a sustained-release effect for immunoglobulin G in vivo. Our current research will provide a basis for understanding the role of BCLs on the bioavailability of IgG and their immunoregulatory effect on immunosuppressed mice, which might further provide some reference for the application of BCLs.


Assuntos
Imunoglobulina G , Fator de Necrose Tumoral alfa , Gravidez , Feminino , Animais , Bovinos , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4/metabolismo , Interleucina-10/metabolismo , Lipossomos , Camundongos Endogâmicos BALB C , Disponibilidade Biológica , Colostro/metabolismo , Interferon gama/metabolismo
6.
J Food Sci ; 89(3): 1773-1790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38349030

RESUMO

Sucrose emerges as a chelating agent to form a stable sucrose-metal-ion chelate that can potentially improve metal-ion absorption. This study aimed to analyze the structure of sucrose-calcium chelate and its potential to promote calcium absorption in both Caco-2 monolayer cells and mice. The characterization results showed that calcium ions mainly chelated with hydroxyl groups in sucrose to produce sucrose-calcium chelate, altering the crystal structure of sucrose (forming polymer particles) and improving its thermal stability. Sucrose-calcium chelate dose dependently increased the amount of calcium uptake, retention, and transport in the Caco-2 monolayer cell model. Compared to CaCl2 , there was a significant improvement in the proportion of absorbed calcium utilized for transport but not retention (93.13 ± 1.75% vs. 67.67 ± 7.55%). Further treatment of calcium channel inhibitors demonstrated the active transport of sucrose-calcium chelate through Cav1.3. Cellular thermal shift assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assays indicated that the ability of sucrose-calcium chelate to promote calcium transport was attributed to its superior ability to bind with PMCA1b, a calcium transporter located on the basement membrane, and stimulate its gene expression compared to CaCl2 . Pharmacokinetic analysis of mice confirmed the calcium absorption-promoting effect of sucrose-calcium chelate, as evident by the higher serum calcium level (44.12 ± 1.90 mg/L vs. 37.42 ± 1.88 mmol/L) and intestinal PMCA1b gene expression than CaCl2 . These findings offer a new understanding of how sucrose-calcium chelate enhances intestinal calcium absorption and could be used as an ingredient in functional foods to treat calcium deficiency. PRACTICAL APPLICATION: The development of high-quality calcium supplements is crucial for addressing the various adverse symptoms associated with calcium deficiency. This study aimed to prepare a sucrose-calcium chelate and analyze its structure, as well as its potential to enhance calcium absorption in Caco-2 monolayer cells and mice. The results demonstrated that the sucrose-calcium chelate effectively promoted calcium absorption. Notably, its ability to enhance calcium transport was linked to its strong binding with PMCA1b, a calcium transporter located on the basement membrane, and its capacity to stimulate PMCA1b gene expression. These findings contribute to a deeper understanding of how the sucrose-calcium chelate enhances intestinal calcium absorption and suggest its potential use as an ingredient in functional foods for treating calcium deficiency.


Assuntos
Cálcio da Dieta , Cálcio , Humanos , Camundongos , Animais , Cálcio/metabolismo , Células CACO-2 , Cloreto de Cálcio , Fenômenos Químicos
7.
Food Chem ; 445: 138661, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350195

RESUMO

To improve the poor water solubility and oral bioavailability of tyrosol, novel tyrosol liposomes (Tyr-LPs) were prepared by pH-driven method. Fourier transform infrared (FTIR) absorption spectra and X-ray diffraction (XRD) analysis indicated that Tyr-LPs were successfully encapsulated and tyrosol was in an amorphous state in liposomes. When tyrosol content in Tyr-LP was 1.33 mg/ml and the Tyr:LP (mass ratio) = 1:2, favorable dispersibility of Tyr-LP was exhibited, with an instability index of 0.049 ± 0.004, PDI of 0.274 ± 0.003, and the EE of 94.8 ± 2.5 %. In vivo pharmacokinetic studies showed that after oral administration of tyrosol or Tyr-LP (Tyr:LP = 1:2), concentration-versus-time curve (AUC0-720mins) and maximum concentration (Cmax) values of Tyr-LP was respectively 1.5-fold (P < 0.01) and 2.25-fold (P < 0.01) higher than tyrosol, which indicated that the oral bioavailability of tyrosol was effectively improved in Tyr-LPs. Our study thereby provides theoretical support for the application of Tyr-LP for optimal delivery of tryosol.


Assuntos
Lipopolissacarídeos , Lipossomos , Álcool Feniletílico/análogos & derivados , Ratos , Animais , Disponibilidade Biológica , Ratos Sprague-Dawley , Solubilidade , Administração Oral , Concentração de Íons de Hidrogênio
8.
Nutrition ; 121: 112362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354680

RESUMO

BACKGROUND: Fatty acids (FAs) in human milk are important nutrients for infants. They play important roles in energy supply, nervous system development, and metabolic function maintenance. However, how the composition of major milk FAs change with lactation stages remains controversial. OBJECTIVES: To systematically review the concentration range of major FAs in human milk at various lactation stages. METHODS: A total of 12 papers involving 50 sets of data with 3507 participants were reviewed according to the PRISMA checklist and flow diagram. The inclusion criteria was the literatures had the FAs contents in breast milk of healthy lactation mothers at three lactation stages and the dietary patterns could be calculated. The exclusion criteria were: the studies were duplicates, were unrelated to dietary patterns or breast milk composition, and/or the study populations were unhealthy. We searched PubMed, the China National Knowledge Infrastructure, WanFang, and Web of science. Agency for Health Care Research and Quality (AHRQ) was used to assess the bias of studies. The mean values of polyunsaturated fatty acids (PUFAs) including docosahexaenoic acid (DHA), arachidonic acid (AA), eicosapentaenoic acid (EPA), α-linolenic acid (ALA), linoleic acid (LA), monounsaturated fatty acids (MUFAs), and saturated fatty acids (SFAs, including lauric acid and palmitic acid), in human milk at three lactation stages (colostrum 1-7 d, transitional milk 8-14 d, mature milk 15 d-3 mo) of healthy lactating women were investigated in terms of the high protein dietary pattern. Publication biases were evaluated by Egger's test. RESULTS: According to the percentage in total fat of colostrum, transitional milk, and mature milk (% wt/wt), respectively, the results showed that PUFA (25.72%, 24.92%, and 22.69%), AA (0.85%, 0.76%, and 0.59%), DHA (0.53%, 0.47%, and 0.39%), EPA (0.15%, 0.10%, and 0.10%), and MUFA (37.39%, 37.21%, and 36.14%) contents in breast milk decreased with lactation, while another two PUFA forms, LA (17.47%, 17.82%, and 17.48%), and ALA (1.09%, 1.39%, and 1.24%) arrived at a peak in the transitional milk and then decreased in the mature milk, SFA (37.46%, 38.64%, and 40.52%), and lauric acid contents (2.78%, 4.91%, and 4.97%) increased with the lactation stages. CONCLUSION: These findings could shed light on the dynamic change progress of major FA metabolism, potentially enhancing the knowledge of lactation biology, and improving infant feeding practices to meet their needs.


Assuntos
Ácidos Graxos , Lactação , Lactente , Humanos , Feminino , Ácidos Graxos/análise , Lactação/metabolismo , 60408 , Leite Humano/química , Ácidos Graxos Insaturados , Ácido Araquidônico/análise , Ácido Linoleico , Ácidos Docosa-Hexaenoicos/análise , Ácidos Láuricos/análise , Ácidos Láuricos/metabolismo
9.
Food Chem ; 445: 138708, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387314

RESUMO

Raspberry leaves were subjected to steam explosion at 0.5 and 1.0 MPa for 60-120 s, aiming to disrupt their physical and chemical structure and, consequently, promote the release of phenolic compounds into the leaf aqueous infusion. Under optimal condition of 1.0 MPa for 60 s, steam explosion led to a notable 23 % increase in total phenolic content, a 29 % elevation in ABTS radical scavenging capacity, and a 13 % rise in DPPH radical scavenging capacity of the aqueous infusion. Utilizing UHPLC-Q-TOF-MS/MS and UHPLC-QE-MS/MS techniques, respectively, a total of 39 phenolic compounds were identified from raspberry leaves, and the changes in the contents of the most important 11 species were analyzed following steam explosion. Through correlation analysis and considering the content of each phenolic compound, it was inferred that the heightened antioxidant capacity of the aqueous infusion primarily stemmed from a substantial increase in the release of ellagic acid after steam explosion.


Assuntos
Rubus , Vapor , Água , Espectrometria de Massas em Tandem , Fenóis/análise , Antioxidantes/química , Nutrientes/análise , Folhas de Planta/química
10.
Mol Nutr Food Res ; 68(5): e2300331, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299432

RESUMO

SCOPE: Vitexin, a C-glycosylated flavonoid, is abundant in food sources and has potential health-beneficial properties. However, the targets for its beneficial effects remain largely unknown. This study aims to establish an in vitro cell model of vascular low-grade inflammation and explore the antiinflammatory mechanism of vitexin. METHODS AND RESULTS: Low-dose TNFα and IL-17 are combined to establish a cell model of vascular low-grade inflammation. Cell-based studies show that low-dose TNFα (1 ng mL-1) alone has a slight effect, but its combination with IL-17 can potently induce protein expression of inflammatory cytokines, leading to an inflammatory state. However, the vascular inflammation caused by low-dose TNF plus IL-17 does not lead to oxidative stress, and reactive oxygen species (ROS) does not involved in developing this inflammation. Vitexin can be absorbed by human umbilical vein endothelial (HUVEC) cells to increase the Nrf2 protein level and attenuate inflammation. In addition, the antiinflammatory effect of vitexin is blocked by the knockdown of Nrf2. Further localized surface plasmon resonance, drug affinity responsive target stability, and molecular docking demonstrate that vitexin can directly interact with Keap1 to disrupt Keap1-Nrf2 interaction and thus activate Nrf2. Treatment of mice with a bolus oral gavage of vitexin (100 mg kg-1 body weight) or a high-fat diet supplemented with vitexin (5 mg kg-1 body weight per day) for 12 weeks confirms the rapid increase in blood vitexin levels and subsequent incorporation into blood vessels to activate Nrf2 and ameliorate inflammation in vivo. CONCLUSION: The findings provide a reliable cell model of vascular low-grade inflammation and indicate Nrf2 protein as the potential target of vitexin to inhibit vascular inflammation.


Assuntos
Apigenina , Fator 2 Relacionado a NF-E2 , Fator de Necrose Tumoral alfa , Humanos , Animais , Camundongos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-17/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Transdução de Sinais , Inflamação/tratamento farmacológico , Peso Corporal
11.
Food Funct ; 15(3): 1539-1552, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38234289

RESUMO

Currently, the health benefits of ruminant trans fatty acids (R-TFA) are still controversial. Our previous investigations indicated that R-TFA at higher dosages (1.3% and 4% E) caused disordered lipid metabolism in mice; however, through collecting R-TFA intake data in 9 provinces of China, it was suggested that, in 2021, the range of R-TFA intake for Chinese residents was about 0.053-0.307 g d-1. Based on the 2022 Nutritional Dietary Guidelines for Chinese Residents, the recommended daily energy supply from R-TFA was about 0.11%-0.15% E. However, the health effects of R-TFA at a lower dosage are still unknown; therefore, our current research aims to further explore the effects of R-TFA on health. Through in vivo experiments, it was shown that R-TFA (0.15% E) decreased body weight gain and serum cholesterol levels in C57BL/6J mice fed a high-fat diet, while it had no significant effect on mice fed a low-fat diet. Besides, hepatic histopathology analysis suggested that R-TFA (0.15% E) ameliorated the degree of hepatic steatosis and reduced intrahepatocyte lipid droplet accumulation in C57BL/6J mice fed a high-fat diet. Through lipidomics analysis, we further screened 8 potential lipid metabolites that participate in regulating the dysregulation of lipid metabolism. Finally, it was suggested that R-TFA (0.15% E) down-regulated the expression of genes related to inflammation and cholesterol synthesis while up-regulated the expression of genes related to cholesterol clearance, which might partially explain the salutary effect of R-TFA (0.15% E) in ameliorating the hepatic steatosis and improving disordered lipid metabolism in mice fed a high-fat diet. Our current research will provide a reference for the intake of R-TFA and, furthermore, give some insights into understanding the health effects of R-TFA.


Assuntos
Fígado Gorduroso , Transtornos do Metabolismo dos Lipídeos , Ácidos Graxos trans , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta , Ácidos Graxos trans/metabolismo , Ácidos Graxos trans/farmacologia , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Colesterol , Transtornos do Metabolismo dos Lipídeos/metabolismo , Ruminantes/metabolismo
12.
Food Chem ; 443: 138560, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295563

RESUMO

Based on multivariate statistics, this review compared major triacylglycerols (TAGs) in animal milk and human milk fat from China and other countries. Human milk fat differs from animal milk fat in that it has longer acyl chains and higher concentrations of 1,3-dioleoyl-2-palmitoyl-glycerol (O-P-O) and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (O-P-L). O-P-L is a significant and distinct TAG in human milk fat, particularly in China. 1-oleoyl-2-palmitoyl-3-linoleoylglycerol (OPL) is human milk's major triglyceride molecule of O-P-L, accounting for more than 70%. As a result, OPL has piqued the interest of Chinese academics. The synthesis process and nutritional outcomes of OPL have been studied, including changes in gut microbiota, serum lipid composition, improved fatty acid and calcium absorption, and increased total bile acid levels. However, current OPL research is limited. Therefore, this review discussed enzymatic preparation of 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and OPL and their nutritional and physiological activity to direct future research direction for sn-2 palmitate and OPL.


Assuntos
Glicerídeos , Glicerol , Leite Humano , Animais , Humanos , Triglicerídeos/análise , Leite Humano/química , Valor Nutritivo , Relação Estrutura-Atividade
14.
J Agric Food Chem ; 71(49): 19610-19621, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038963

RESUMO

This study investigated differences in absorption and metabolism between 1,3-oleate-2-palmitate glycerol (OPO) and 1-oleate-2-palmitate-3-linoleate glycerol (OPL) using C57BL/6J mice. OPL was associated with higher postprandial plasma total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) concentrations, and the ratio of LDL-C to high-density lipoprotein cholesterol (HDL-C) compared to those of OPO (p > 0.05). OPO significantly increased postprandial oleic acid (OA) concentrations compared to OPL over the entire monitoring period (p < 0.05), while OPL significantly elevated linoleic acid (LA) levels compared to OPO (p < 0.05). After 1 month of feeding, the mice in both OPO and OPL groups showed lower final weight, weight gain, and liver TG, LDL-C, and LDL/HDL concentrations compared to the control (soybean oil) group. Lipidomics results showed that OPO increased the biosynthesis of very long-chain fatty acids and decreased the abundance of AcCa (16:1), AcCa (18:2), AcCa (18:1), AcCa (16:0), CarE (16:0), and CarE (16:1) relative to OPL. These lipid metabolites were positively correlated with liver TG, LDL-C, and LDL/HDL levels and negatively related to peroxisome proliferator-activated receptors α (PPARα) and acyl-CoA oxidase (ACOX1) expression. This study showed differences in physiologic functions between OPO and OPL and provided support for the future application of OPL in infant formula.


Assuntos
Ácido Linoleico , Ácido Oleico , Humanos , Camundongos , Animais , Ácido Oleico/metabolismo , Ácido Linoleico/metabolismo , Palmitatos , Glicerol , LDL-Colesterol , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo , Ácidos Linoleicos
15.
J Ginseng Res ; 47(6): 694-705, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38107396

RESUMO

Panax ginseng Meyer is a traditional Chinese medicine that is widely used as tonic in Asia. The main pharmacologically active components of ginseng are the dammarane-type ginsenosides, which have been shown to have anti-cancer, anti-inflammatory, immunoregulatory, neuroprotective, and metabolic regulatory activities. Moreover, some of ginsenosides (eg, Rh2 and Rg3) have been developed into nutraceuticals. However, the utilization of ginsenosides in clinic is restrictive due to poor permeability in cells and low bioavailability in human body. Obviously, the dammarane skeleton and glycosyls of ginsenosides are responsible for these limitations. Therefore, improving the oral bioavailability of ginsenosides has become a pressing issue. Here, based on the structures of ginsenosides, we summarized the understanding of the factors affecting the oral bioavailability of ginsenosides, introduced the methods to enhance the oral bioavailability and proposed the future perspectives on improving the oral bioavailability of ginsenosides.

16.
Nutrients ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37960305

RESUMO

Oxidative stress and inflammation are crucial factors in the development of cardiovascular diseases. In previous research, the oxidative stress and inflammation models have frequently been explored independently. In the current study, we investigated the antioxidant and anti-inflammatory effects of tomato extract and its two main carotenoids (lutein and lycopene) with various concentrations using a rat cardiomyocyte model of co-existing oxidative stress and persistent chronic inflammation. It was discovered that the antioxidant effects of 0.5-5 µM lutein, 0.5-5 µM lycopene, and 50-200 µg/mL tomato extract increased in a dose-dependent manner. However, the pro-oxidation effects emerged by measuring the antioxidant-related indices, including the levels of ROS, SOD, and GPX in H9c2 cells as concentrations exceeded those mentioned above. The anti-inflammatory effects of lutein, lycopene, and tomato extract were simultaneously strengthened with higher concentrations, potentially due to the suppression of the NF-κB signaling pathway. Furthermore, high concentrations of lutein, lycopene, and tomato extract potentially regulated Nrf2/HO-1 and NF-κB signaling pathways dependent on TGF-1ß and IL-10 to demonstrate high concentrations of pro-oxidation and anti-inflammation effects. Our findings indicate that the dose-effect regulatory mechanisms of antioxidant and anti-inflammatory properties among lutein, lycopene, and tomato extract will be advantageous in developing more effective therapeutic strategies to prevent cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Solanum lycopersicum , Ratos , Animais , Carotenoides/metabolismo , Antioxidantes/metabolismo , Licopeno/farmacologia , Licopeno/uso terapêutico , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Luteína/farmacologia , Luteína/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico
17.
Food Funct ; 14(23): 10617-10627, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37964622

RESUMO

Phospholipids play a crucial role in the growth and neurodevelopment of infants. Currently, soybean phospholipids (SPLs) are the common phospholipid component in most infant formulas (IFs), which, however, shows an obvious difference with the phospholipid (PL) composition of human milk fat. Therefore, in the present study, human milk phospholipid analogs (HMPAs) were prepared by mimicking the composition of PE, PC, PI, PS, and SM in breast milk phospholipids and the composition of the major fatty acids (C16:0, C18:0, C18:1, and C18:2), and their digestion and absorption characteristics were explored using in vitro and mice models. The prepared HMPA contained 26.48% PE, 24.64% PC, 36.19% SM, 6.35% PI, and 6.32% PS, with 40.51% C16:0, 17.02% C18:0, 29.19% C18:1, and 13.26% C18:2, showing different digestive properties relative to SPL. There was little effect on the physical and chemical properties of HMPA under in vitro gastric conditions. The hydrolysis degree, fatty acids release rate, and average particle size decreasing rate of HMPA was significantly higher than that of SPL during digestion in vitro intestine (P < 0.05), showing better digestive process relative to SPL. In terms of the mice model, HMPA had a higher hydrolysis degree in the intestinal tract. Based on the area under curve (AUC) analysis of serum fatty acids, it was found that despite HMPA being absorbed at a slower rate than SPL, it was absorbed more than SPL. In summary, the digestion and absorption of HMPA were preferred to SPL, and these obtained results might provide a theoretical basis for the development and utilization of HMPA in IF.


Assuntos
Leite Humano , Fosfolipídeos , Feminino , Lactente , Humanos , Camundongos , Animais , Fosfolipídeos/análise , Leite Humano/química , Hempa/análise , Ácidos Graxos/análise , Leite/química , Digestão
18.
Food Res Int ; 174(Pt 1): 113571, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986442

RESUMO

The differences in the milk fat digestion from goat milk (GM), camel milk (CM), bovine milk (BM), sheep milk (SM), mare milk (MM) and human milk (HM) using an in vitro gastrointestinal digestion model for simulated infants were investigated. The particle size distributions in goat and mare milk were similar to that of HM after digestion in the small intestine. During in vitro digestion, the zeta-potential change of MM was more consistent with that of HM. After 60 min of gastric digestion, the lipolysis degree (LD) of different milks were<2%, of which the highest LD was MM (1.84%), followed by HM (1.45%). At the end of intestinal digestion, the LD of HM was the highest, reaching 88.47%, and the LD of SM was similar to that of HM, reaching 83.92%, followed by GM (57.00%), BM (40.98%) and MM (39.37%), respectively, the LD of CM was only 29.99%, which was much lower than HM. The results of the glyceride composition hierarchical clustering analysis revealed that MM and HM were clustered into one category at the end of gastric and intestinal digestion. This study provides a scientific basis for the development of lipid ingredients in infant formula.


Assuntos
Digestão , Leite Humano , Ovinos , Lactente , Humanos , Animais , Feminino , Cavalos , Fórmulas Infantis , Intestino Delgado , Cabras
19.
J Sci Food Agric ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38029376

RESUMO

BACKGROUND: Rancidity causes unpleasant tastes and smells, and the degradation of fatty acids and natural antioxidants, so that an oil is unfit to be consumed. Natural antioxidants, including tocopherols, polyphenols (sesamol, canolol, ferulic acid, caffeic acid, etc.), ß-carotene, squalene and phytosterols, contribute to delay the oxidation of vegetable oils. However, studies on the combination of natural antioxidants to lengthen the shelf life of unsaturated fatty acid-rich blended oil have not been reported. RESULTS: All of the composite antioxidants had the potential to significantly improve the oxidation stability of blended oil. Blended oil G with 0.05 g kg-1 ß-carotene, 0.25 g kg-1 sesamol and 0.25 g kg-1 caffeic acid showed the best anti-autooxidation. It is also effective in improving the oxidative stability of vegetable oils containing various fatty acids. The oxidation stability index of the blended oil containing the optimum composition of natural antioxidants was 2.17-fold longer than that of the control sample. After the end of accelerated oxidation, the oil's peroxide value, p-anisidine value and total oxidation value were 6.59 times, 12.26 times and 6.65 times lower than those of the control sample, respectively. CONCLUSION: (1) The combination of natural antioxidants ß-carotene (0.05 g kg-1 ), sesamol (0.25 g kg-1 ) and caffeic acid (0.25 g kg-1 ) enhances the oxidative stability of unsaturated fatty acid-rich blended oils. (2) ß-Carotene is the main antioxidant in the early stages of oxidation. (3) Sesamol and caffeic acid are the main antioxidants in the middle and late stages of oxidation. © 2023 Society of Chemical Industry.

20.
Curr Res Food Sci ; 7: 100630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021260

RESUMO

Lotus root (LR) is prone to browning after harvest due to the oxidation of phenolic compounds by polyphenol oxidase (PPO). This study compared the effects of LR extract and BLR extract on cholesterol metabolism in high-fat diet (HFD) mice. Our findings highlighted the innovative potentiality of BLR extract in effectively regulating cholesterol metabolism via inhibiting the intestinal FXR-FGF15 signaling pathway and boosting probiotics in gut microbiota, offering valuable insights for hypercholesterolemia and metabolic disorders. In detail, catechin was the main phenolic compound in LR, while after browning, theaflavin was the main oxidation product of phenolic compounds in BLR. Both the intake of LR extract and BLR extract regulated the disorder of cholesterol metabolism induced by HFD. In particular, BLR extract intake exhibited more robust effects on increasing the BAs contents synthesized in the liver and excreted in feces compared with LR extract intake. Furthermore, the consumption of BLR extract was more effective than that of LR extract in reducing the ileal protein expressions of FXR and FGF15 and shifting BAs biosynthesis from the classical pathway to the alternative pathway. Moreover, LR extract and BLR extract had distinct effects on the gut microbiota in HFD-fed mice: BLR extract significantly elevated probiotics Akkermansia abundance, while LR extract increased Lactobacillus abundance. Therefore, both LR extract and BLR extract improved the cholesterol deposition effectively and BLR extract even showed a stronger effect on regulating key gene and protein expressions of cholesterol metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...